http://proquestcombo.safaribooksonline.com.ezproxy1.lib.asu.edu/...

Username: tatyana koziupa Book: Learning Python, 4th Edition. No part of any chapter or book may be reproduced or transmitted in any form by any
means without the prior written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates
the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be
prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Chapter 32. Exception Basics

This part of the book deals with exceptions, which are events that can modify the flow of control through a program. In Python, exceptions are triggered automatically
on errors, and they can be triggered and intercepted by your code. They are processed by four statements we’ll study in this part, the first of which has two variations
(listed separately here) and the last of which was an optional extension until Python 2.6 and 3.0:

try/except

Catch and recover from exceptions raised by Python, or by you.

try/finally

Perform cleanup actions, whether exceptions occur or not.

raise

Trigger an exception manually in your code.

assert

Conditionally trigger an exception in your code.

with/as
Implement context managers in Python 2.6 and 3.0 (optional in 2.5).

This topic was saved until nearly the end of the book because you need to know about classes to code exceptions of your own. With a few exceptions (pun intended),
though, you’ll find that exception handling is simple in Python because it’s integrated into the language itself as another high-level tool.

1ofl 3/10/18, 4:42 PM

http://proquestcombo.safaribooksonline.com.ezproxy1.lib.asu.edu/...

Username: tatyana koziupa Book: Learning Python, 4th Edition. No part of any chapter or book may be reproduced or transmitted in any form by any
means without the prior written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates
the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be
prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Why Use Exceptions?

In a nutshell, exceptions let us jump out of arbitrarily large chunks of a program. Consider the hypothetical pizza-making robot we discussed earlier in the book.
Suppose we took the idea seriously and actually built such a machine. To make a pizza, our culinary automaton would need to execute a plan, which we would
implement as a Python program: it would take an order, prepare the dough, add toppings, bake the pie, and so on.

Now, suppose that something goes very wrong during the “bake the pie” step. Perhaps the oven is broken, or perhaps our robot miscalculates its reach and
spontaneously combusts. Clearly, we want to be able to jump to code that handles such states quickly. As we have no hope of finishing the pizza task in such unusual
cases, we might as well abandon the entire plan.

That’s exactly what exceptions let you do: you can jump to an exception handler in a single step, abandoning all function calls begun since the exception handler was
entered. Code in the exception handler can then respond to the raised exception as appropriate (by calling the fire department, for instance!).

One way to think of an exception is as a sort of structured “super go to.” An exception handler (try statement) leaves a marker and executes some code. Somewhere

further ahead in the program, an exception is raised that makes Python jump back to that marker, abandoning any active functions that were called after the marker
was left. This protocol provides a coherent way to respond to unusual events. Moreover, because Python jumps to the handler statement immediately, your code is
simpler—there is usually no need to check status codes after every call to a function that could possibly fail.

Exception Roles
In Python programs, exceptions are typically used for a variety of purposes. Here are some of their most common roles:
Error handling

Python raises exceptions whenever it detects errors in programs at runtime. You can catch and respond to the errors in your code, or ignore the exceptions that are
raised. If an error is ignored, Python’s default exception-handling behavior kicks in: it stops the program and prints an error message. If you don’t want this default

behavior, code a try statement to catch and recover from the exception—Python will jump to your try handler when the error is detected, and your program will

resume execution after the try.

Event notification
Exceptions can also be used to signal valid conditions without you having to pass result flags around a program or test them explicitly. For instance, a search
routine might raise an exception on failure, rather than returning an integer result code (and hoping that the code will never be a valid result).

Special-case handling
Sometimes a condition may occur so rarely that it’s hard to justify convoluting your code to handle it. You can often eliminate special-case code by handling

unusual cases in exception handlers in higher levels of your program.

Termination actions

As you’ll see, the try/finally statement allows you to guarantee that required closing-time operations will be performed, regardless of the presence or absence of

exceptions in your programs.

Unusual control flows

Finally, because exceptions are a sort of high-level “go to,” you can use them as the basis for implementing exotic control flows. For instance, although the

language does not explicitly support backtracking, it can be implemented in Python by using exceptions and a bit of support logic to unwind assignments.[7—3]
There is no “go to” statement in Python (thankfully!), but exceptions can sometimes serve similar roles.

We’ll see such typical use cases in action later in this part of the book. For now, let’s get started with a look at Python’s exception-processing tools.

1ofl 3/10/18, 4:34 PM

http://proquestcombo.safaribooksonline.com.ezproxy1.lib.asu.edu/...

Username: tatyana koziupa Book: Learning Python, 4th Edition. No part of any chapter or book may be reproduced or transmitted in any form by any
means without the prior written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates
the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be
prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Exceptions: The Short Story

Compared to some other core language topics we’ve met in this book, exceptions are a fairly lightweight tool in Python. Because they are so simple, let’s jump right
into some code.

Default Exception Handler

Suppose we write the following function:

>>> def fetcher(obj, index):

return obj[index]

There’s not much to this function—it simply indexes an object on a passed-in index. In normal operation, it returns the result of a legal index:

>>> x = 'spam’'
>>> fetcher(x, 3) # Like x[3]

m

However, if we ask this function to index off the end of the string, an exception will be triggered when the function tries to run obj[index]. Python detects out-of-

bounds indexing for sequences and reports it by raising (triggering) the built-in IndexError exception:

>>> fetcher(x, 4) # Default handler - shell interface
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 2, in fetcher

IndexError: string index out of range

Because our code does not explicitly catch this exception, it filters back up to the top level of the program and invokes the default exception handler, which simply
prints the standard error message. By this point in the book, you’ve probably seen your share of standard error messages. They include the exception that was raised,
along with a stack trace—a list of all the lines and functions that were active when the exception occurred.

The error message text here was printed by Python 3.0; it can vary slightly per release, and even per interactive shell. When coding interactively in the basic shell
interface, the filename is just “<stdin>,” meaning the standard input stream. When working in the IDLE GUI’s interactive shell, the filename is “<pyshell>”, and

source lines are displayed, too. Either way, file line numbers are not very meaningful when there is no file (we’ll see more interesting error messages later in this part
of the book):

>>> fetcher(x, 4) # Default handler - IDLE GUI interface
Traceback (most recent call last):
File "<pyshell#6>", line 1, in <module>
fetcher(x, 4)
File "<pyshell#3>", line 2, in fetcher
return obj[index]

IndexError: string index out of range

In a more realistic program launched outside the interactive prompt, after printing an error message the default handler at the top also terminates the program
immediately. That course of action makes sense for simple scripts; errors often should be fatal, and the best you can do when they occur is inspect the standard error

1of6 3/10/18, 4:35 PM

http://proquestcombo.safaribooksonline.com.ezproxy1.lib.asu.edu/...

message.

Catching Exceptions

Sometimes, this isn’t what you want, though. Server programs, for instance, typically need to remain active even after internal errors. If you don’t want the default

exception behavior, wrap the call in a try statement to catch exceptions yourself:

>>> try:
fetcher(x, 4)

. except IndexError: # Catch and recover

print('got exception')

got exception

>>>

Now, Python jumps to your handler (the block under the except clause that names the exception raised) automatically when an exception is triggered while the try

block is running. When working interactively like this, after the except clause runs, we wind up back at the Python prompt. In a more realistic program, try
statements not only catch exceptions, but also recover from them:

>>> def catcher():
try:
fetcher(x, 4)
except IndexError:
print('got exception')

print('continuing')

>>> catcher()
got exception
continuing

>>>

This time, after the exception is caught and handled, the program resumes execution after the entire try statement that caught it—which is why we get the

“continuing” message here. We don’t see the standard error message, and the program continues on its way normally.

Raising Exceptions
So far, we’ve been letting Python raise exceptions for us by making mistakes (on purpose this time!), but our scripts can raise exceptions too—that is, exceptions can

be raised by Python or by your program, and can be caught or not. To trigger an exception manually, simply run a raise statement. User-triggered exceptions are
caught the same way as those Python raises. The following may not be the most useful Python code ever penned, but it makes the point:

>>> try:
raise IndexError # Trigger exception manually
. except IndexError:

print('got exception')

got exception

As usual, if they’re not caught, user-triggered exceptions are propagated up to the top-level default exception handler and terminate the program with a standard error
message:

20f6 3/10/18, 4:35 PM

3of6

http://proquestcombo.safaribooksonline.com.ezproxy1.lib.asu.edu/...

>>> raise IndexError
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError

As we’ll see in the next chapter, the assert statement can be used to trigger exceptions, too—it’s a conditional raise, used mostly for debugging purposes during

development:

>>> assert False, 'Nobody expects the Spanish Inquisition!'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AssertionError: Nobody expects the Spanish Inquisition!

User-Defined Exceptions

The raise statement introduced in the prior section raises a built-in exception defined in Python’s built-in scope. As you’ll learn later in this part of the book, you can
also define new exceptions of your own that are specific to your programs. User-defined exceptions are coded with classes, which inherit from a built-in exception

class: usually the class named Exception. Class-based exceptions allow scripts to build exception categories, inherit behavior, and have attached state information:

>>> class Bad(Exception): # User-defined exception

pass

>>> def doomed():

raise Bad() # Raise an instance
>>> try:
doomed()
. except Bad: # Catch class name

print('got Bad')

got Bad

>>>

Termination Actions

Finally, try statements can say “finally” —that is, they may include finally blocks. These look like except handlers for exceptions, but the try/finally

combination specifies termination actions that always execute “on the way out,” regardless of whether an exception occurs in the try block:

>>> try:
fetcher(x, 3)

... finally: # Termination actions

print('after fetch')

m

after fetch

Here, if the try block finishes without an exception, the finally block will run, and the program will resume after the entire try. In this case, this statement seems a

3/10/18, 4:35 PM

http://proquestcombo.safaribooksonline.com.ezproxy1.lib.asu.edu/...

bit silly—we might as well have simply typed the print right after a call to the function, and skipped the try altogether:

fetcher(x, 3)

print('after fetch')

There is a problem with coding this way, though: if the function call raises an exception, the print will never be reached. The try/finally combination avoids this

pitfall—when an exception does occur in a try block, finally blocks are executed while the program is being unwound:

>>> def after():
try:
fetcher(x, 4)
finally:
print('after fetch')

print('after try?')

>>> after()

after fetch

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in after
File "<stdin>", line 2, in fetcher

IndexError: string index out of range

>>>

Here, we don’t get the “after try?” message because control does not resume after the try/finally block when an exception occurs. Instead, Python jumps back to
run the finally action, and then propagates the exception up to a prior handler (in this case, to the default handler at the top). If we change the call inside this

function so as not to trigger an exception, the finally code still runs, but the program continues after the try:

>>> def after():
try:
fetcher(x, 3)
finally:
print('after fetch')

print('after try?')

>>> after()
after fetch
after try?

>>>

In practice, try/except combinations are useful for catching and recovering from exceptions, and try/finally combinations come in handy to guarantee that
termination actions will fire regardless of any exceptions that may occur in the try block’s code. For instance, you might use try/except to catch errors raised by

code that you import from a third-party library, and try/finally to ensure that calls to close files or terminate server connections are always run. We’ll see some such
practical examples later in this part of the book.

Although they serve conceptually distinct purposes, as of Python 2.5, we can now mix except and finally clauses in the same try statement—the finally is run on

the way out regardless of whether an exception was raised, and regardless of whether the exception was caught by an except clause.

As we’ll learn in the next chapter, Python 2.6 and 3.0 provide an alternative to try/finally when using some types of objects. The with/as statement runs an object’s

40f6 3/10/18, 4:35 PM

http://proquestcombo.safaribooksonline.com.ezproxy1.lib.asu.edu/...

context management logic to guarantee that termination actions occur:

>>> with open('lumberjack.txt', 'w') as file: # Always close file on exit

file.write('The larch!\n')

Although this option requires fewer lines of code, it’s only applicable when processing certain object types, so try/finally is a more general termination structure.

On the other hand, with/as may also run startup actions and supports user-defined context management code.

S5of6 3/10/18, 4:35 PM

6 of 6

One way to see how exceptions are useful is to compare coding styles in Python and languages without exceptions. For instance, if you want to write robust programs in the C
language, you generally have to test return values or status codes after every operation that could possibly go astray, and propagate the results of the tests as your programs run:

doStuff()

if (doFirstThing() == ERROR) # Detect errors everywhere

return ERROR;

if (doNextThing() == ERROR)

return ERROR;

return doLastThing();

}
main()
{
if (doStuff() == ERROR)
badEnding();
else
goodEnding();
}

In fact, realistic C programs often have as much code devoted to error detection as to doing actual work. But in Python, you don’t have to be so methodical (and neurotic!).
You can instead wrap arbitrarily vast pieces of a program in exception handlers and simply write the parts that do the actual work, assuming all is well:

def doStuff(): # Python code

WHY YOU WILL CARE: ERROR CHECKS

#C program

even if not handled here

doFirstThing() # We don't care about exceptions here,

doNextThing() # so we don't need to detect them

doLastThing()

doStuff() # This is where we care about results,

except: # so it's the only place we must check

badEnding()
else:

goodEnding()

Because control jumps immediately to a handler when an exception occurs, there’s no need to instrument all your code to guard for errors. Moreover, because Python detects
errors automatically, your code usually doesn’t need to check for errors in the first place. The upshot is that exceptions let you largely ignore the unusual cases and avoid error-

checking code.

http://proquestcombo.safaribooksonline.com.ezproxy1.lib.asu.edu/...

3/10/18, 4:35 PM

http://proquestcombo.safaribooksonline.com.ezproxy1.lib.asu.edu/...

Username: tatyana koziupa Book: Learning Python, 4th Edition. No part of any chapter or book may be reproduced or transmitted in any form by any
means without the prior written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates
the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be
prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Chapter Summary

And that is the majority of the exception story; exceptions really are a simple tool.

To summarize, Python exceptions are a high-level control flow device. They may be raised by Python, or by your own programs. In both cases, they may be ignored
(to trigger the default error message), or caught by try statements (to be processed by your code). The try statement comes in two logical formats that, as of Python
2.5, can be combined—one that handles exceptions, and one that executes finalization code regardless of whether exceptions occur or not. Python’s raise and assert
statements trigger exceptions on demand (both built-ins and new exceptions we define with classes); the with/as statement is an alternative way to ensure that

termination actions are carried out for objects that support it.

In the rest of this part of the book, we’ll fill in some of the details about the statements involved, examine the other sorts of clauses that can appear under a try, and
discuss class-based exception objects. The next chapter begins our tour by taking a closer look at the statements we introduced here. Before you turn the page, though,
here are a few quiz questions to review.

1ofl 3/10/18, 4:36 PM

http://proquestcombo.safaribooksonline.com.ezproxy1.lib.asu.edu/...

Username: tatyana koziupa Book: Learning Python, 4th Edition. No part of any chapter or book may be reproduced or transmitted in any form by any
means without the prior written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates
the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be
prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Test Your Knowledge: Quiz
1. Name three things that exception processing is good for.
2. What happens to an exception if you don’t do anything special to handle it?
3. How can your script recover from an exception?
4. Name two ways to trigger exceptions in your script.

5. Name two ways to specify actions to be run at termination time, whether an exception occurs or not.

1ofl 3/10/18, 4:37 PM

	Lutz2013_Chapter32_part0
	Lutz2013_Chapter32_part1
	Lutz2013_Chapter32_part2
	Lutz2013_Chapter32_part3
	Lutz2013_Chapter32_part4_questions

