L _!A‘!g’

Learning Geospatial Analysis with Python

Supervised classification

Objects on the Earth reflect different wavelengths of light depending on the materials
that they are made of. In remote sensing, analysts collect wavelength signatures for
specific types of land cover (for example, concrete) and build a library for a specific
area. A computer can then use this library to automatically locate classes in the
library in a new image of the same area.

Unsupervised classification

In an unsupervised classification, a computer groups pixels with similar reflectance
values in an image without any other reference information other than the histogram
of the image.

Creating the simplest possible Python
GIS

Now that we have a better understanding of geospatial analysis, the next step is to
build a simple GIS using Python called simpleG1s. This small program will be a
technically complete GIS with a geographic data model and the ability to render the
data as a visual thematic map showing the population of different cities.

The data model will also be structured so that you can perform basic queries. Our
simpleG1s will contain the state of Colorado, three cities, and population counts for
each city.

Most importantly, we will demonstrate the power and simplicity of Python
programming by building this tiny system in pure Python. We will only use
modules available in the standard Python distribution without downloading
any third-party libraries.

Getting started with Python

As stated earlier, this book assumes that you have some basic knowledge of Python.
The examples in this book are based on Python 3.4.3, which you can download here:

https://www.python.org/downloads/release/python—343/

[38]

Chapter 1

- The only module used in the following example is the turt1le module that provides

- avery simple graphics engine based on the Tkinter library included with Python.

~ If you used the installers for Windows or Mac OS X, the Tkinter library should be
included already. If you compiled Python yourself or are using a distribution from

- somewhere besides Python.org, then make sure that you can import the turtle

- module by typing the following at a command prompt to run the turtle demo script:

- python -m turtle installation not needed

If your Python distribution does not have Tkinter, you can find information on
installing it from the following page. The information is for Python 2.3 but the
- process is still the same:

- http://tkinter.unpythonic.net/wiki/How_to_install Tkinter
- The official Python wiki page for Tkinter can be found here:
‘https://wiki.python.org/moin/TkInter

The documentation for Tkinter is in the Python Standard Library documentation that
“can be found at https://docs.python.org/2/library/tkinter.html.

':If you are new to Python, Dive into Python is a free online book, which covers all
the basics of Python and will bring you up to speed. For more information, refer
tohttp://www.diveintopython.net.

Building SimpleGIS START HERE

The code is divided into two different sections. The first is the data model section

and the second is the map renderer that draws this data. For the data model, we

will use simple Python lists. A Python list is a native data type, which serves as a
container for other Python objects in a specified order. Python lists can contain other
lists and are great for simple data structures. They also map well to more complex
ctures or even databases if you decide you want to develop your script further.

[39]

Learning Geospatial Analysis with Python

The second portion of the code will render the map using the Python turtle graphics
engine. We will have only one function in the GIS that converts the world coordinates,
in this case, longitude and latitude, into pixel coordinates. All graphics engines have
an origin point of (0,0) that is usually in the top-left or lower-left corner of the canvas.
Turtle graphics are designed to teach programming visually. The turtle graphics
canvas uses an origin of (0,0) in the center, similar to a graphing calculator. The
following image illustrates the type of Cartesian graph that the turtle module uses. In
the following graph, some points are plotted in both positive and negative space:

(2,3)
ot

¥
i

+2 i

K
o
el
SR ————

Y

This also means that the turtle graphics engine can have negative pixel coordinates,
which is uncommon for graphics canvases. However, for this example, the turtle
module is the quickest and simplest way to render our map.

Step by step

You can run this program interactively in the Python interpreter or you can save
the complete program as a script and run it. The Python interpreter is an incredibly
powerful way to learn new concepts because it gives you real-time feedback on
errors or unexpected program behavior. You can easily recover from these issues
and try something else until you get the results that you want:

1. In Python, you usually import modules at the beginning of the script so we'll
import the turtle module first. We'll use Python's import as feature to assign
the module the name t to save space and time when typing turtle commands:

import turtle as t

[40]

Chapter 1

Next, we'll set up the data model starting with some simple variables that
allow us to access list indexes by name instead of numbers to make the code
easier to follow. Python lists index the contained objects starting with the
number 0. So, if we want to access the first item in a list called myList, we
would reference it as follows:

myList[0]

To make our code easier to read, we can also use a variable name assigned to
commonly used indexes:

firstItem = 0
myList[firstItem]

Code until
point 8 is
provided in
simpleGlIS.zip

In computer science, assigning commonly used numbers to an easy-to-remember
variable is a common practice. These variables are called constants.

So, for our example, we'll assign constants for some common elements
used for all the cities. All cities will have a name, one or more points,
and a population count:

NAME = 0
POINTS = 1
POP = 2

%

Now, we'll set up the data for Colorado as a list with name, polygon points,
and population. Note that the coordinates are a list within a list:

state = ["COLORADO", [[-109, 37],[-109, 41]1,[-102, 41],[-102,
3711, 5187582]

The cities will be stored as nested lists. Each city's location consists of a single
point as a longitude and latitude pair. These entries will complete our GIS
data model. We'll start with an empty list called cities and then append the
data to this list for each city:

cities = []

cities.append(["DENVER", [-104.98, 39.74], 634265])
cities.append(["BOULDER", [-105.27, 40.02], 98889])
cities.append (["DURANGO", [-107.88,37.28], 17069])

[41]

Learning Geospatial Analysis with Python

6.

Code until
point 8 is
provided in
simpleGlIS.zip

We will now render our GIS data as a map by first defining a map size.
The width and height can be anything that you want depending on your
screen resolution:

map width = 400
map height = 300

In order to scale the map to the graphics canvas, we must first determine
the bounding box of the largest layer, which is the state. We'll set the map's
bounding box to a global scale and reduce it to the size of the state. To do so,
we'll loop through the longitude and latitude of each point and compare it
with the current minimum and maximum x and y values. If it is larger than
the current maximum or smaller than the current minimum, we'll make this
value the new maximum or minimum, respectively:

minx = 180
maxx = -180
miny = 90

maxy = -90

forx,y in state[POINTS]:
if X < minx: minx = x
elif x > maxx: maxx = X
if vy < miny: miny = y
elif y > maxy: maxy =y
The second step to scaling is to calculate a ratio between the actual state and
the tiny canvas that we will render it on. This ratio is used for coordinate to

pixel conversion. We get the size along the x and y axes of the state and then
we divide the map width and height by these numbers to get our scaling ratio:

dist x = maxx - minx
dist y = maxy - miny

x_ratio = map width / dist x

y ratio

map height / dist y

The following function, called convert (), is our only function in SimpleGIs.
It transforms a point in the map coordinates from one of our data layers to
pixel coordinates using the previous calculations. You'll notice that, at the
end, we divide the map width and height in half and subtract it from the
final conversion to account for the unusual center origin of the turtle graphics
canvas. Every geospatial program has some form of this function:

def convert (point):
lon = point[0]

[42]

Chapter 1

lat = point[1]

x = map width - ((maxx - lomn) * x ratio)

y = map height - ((maxy - lat) * y ratio)

Python turtle graphics start in the

middle of the screen

so we must offset the points so they are centered
x = x - (map width/2)

y = y - (map height/2)

return [x,y]

10. Now for the exciting part! We're ready to render our GIS as a thematic map.
The turtle module uses the concept of a cursor called a pen. Moving the
cursor around the canvas is exactly the same as moving a pen around a piece
of paper. The cursor will draw a line when you move it. So, you'll notice that
throughout the code, we use the t .up () and t .down () commands to pick
the pen up when we want to move to a new location and put it down when
we're ready to draw. We have some important steps in this section. As the
border of Colorado is a polygon, we must draw a line between the last point
and first point to close the polygon. We can also leave out the closing step
and just add a duplicate point to the Colorado dataset. Once we draw the
state, we'll use the write () method to label the polygon:

t.up()
first pixel = None
for point in state[POINTS]: »

pixel = convert (point)
if not first pixel:
first pixel = pixel
t.goto(pixel)
t.down ()
t.goto(first pixel)
t.up()
t.goto([0,0])
t.write(state[NAME], align="center", font=("Arial",16,"bold"))

[43]

Learning Geospatial Analysis with Python

11. If we were to run the code at this point, we would see a simplified map of the
state of Colorado, as shown in the following screenshot:

COLORADO

If you do try to run the code, you'll need to temporarily add
the following line at the end, or the Tkinter window will
close as soon as it finishes drawing;:

t.done()

[44]

Chapter 1

~ 12. Now, we'll render the cities as point locations and label them with their

' names and population. As the cities are a group of features in a list, we'll
loop through them to render them. Instead of drawing lines by moving the
pen around, we'll use the turtle dot () method to plot a small circle at the
pixel coordinate returned by our simpleGISconvert () function. We'll then
label the dot with the city's name and add the population. You'll notice that
we must convert the population number to a string in order to use it in the
turtle write () method. To do so, we use Python's built-in function, str ():

#for city in cities:

pixel = convert (city [POINTS])

t.up()

t.goto(pixel)

li* # Place a point for the city

t.dot(10)

Label the city

t.write(city[NAME] + ", Pop.: " + str(city[POP]), align="left")
t.up()

13. Now we will perform one last operation to prove that we have created a real
GIS. We will perform an attribute query on our data to determine which city
has the largest population. Then, we'll perform a spatial query to see which
city lies the furthest west. Finally, we'll print the answers to our questions on
our thematic map page safely out of the range of the map.

14. As our query engine, we'll use Python's built-in min () and max () functions.
These functions take a list as an argument and return the minimum and
maximum values of this list. These functions have a special feature called
a key argument that allows you to sort complex objects. As we are dealing
with nested lists in our data model, we'll take advantage of the key argument
in these functions. The key argument accepts a function that temporarily
alters the list for evaluation before a final value is returned. In this case, we
want to isolate the population values for comparison and then the points.
We could write a whole new function to return the specified value, but we
can use Python's lambda keyword instead. The lambda keyword defines an
anonymous function that is used inline. Other Python functions can be used
inline, for example, the string function, str (), but they are not anonymous.
This temporary function will isolate our value of interest.

15. So our first question is, which city has the largest population?
biggest city = max(cities, key=lambda city:city[POP])
t.goto(0,-200)
t.write("The biggest city is: " + biggest_ city [NAME])

[45]

Learning Geospatial Analysis with Python

16. The next question is, which city lies the furthest west?
western city = min(cities, key=lambda city:city[POINTS])
t.goto(0,-220)
t.write ("The western-most city is: " + western city[NAME])

17. In the preceding query, we use Python's built in min () function to select
the smallest longitude value and this works because we represented our
city locations as longitude and latitude pairs. It is possible to use different
representations for points including possible representations where this code
would need modification to work correctly. However, for our SimpleGIS, we
are using a common point representation to make it as intuitive as possible.

These last two commands are just for clean up purposes. First, we hide the cursor.
Then, we call the turtle done () method, which will keep the turtle graphics window
with our map open until we choose to close it using the close handle at the top of
the window.

t .pen (shown=False)
t.done ()

Whether you followed along using the Python interpreter or you ran the complete
program as a script, you should see the following map rendered in real time:

[46]

Chapter 1

- Congratulations! You have followed in the footsteps of Paleolithic hunters, the father
of GIS Dr. Roger Tomlinson, geospatial pioneer Howard Fisher, and game-changing
- humanitarian programmers to create a functional, extensible, and technically

- complete geographic information system. It took less than 60 lines of pure Python

- code! You will be hard-pressed to find a programming language that can create a

- complete GIS using only its core libraries in such a finite amount of readable code
“as Python. Even if you did, it is highly unlikely that the language would survive the
- geospatial Python journey that you'll take through the rest of this book.

As you can see, there is lots of room for expansion of simpleG1s. Here are some
other ways that you might expand this simple tool using the reference material for
inter and Python linked at the beginning of this section:

* Create an overview map in the top-right corner with a U.S. border outline
and Colorado's location in the U.S.

* Add color for visual appeal and further clarity

* Create a map key for different features

* Make a list of states and cities and add more states and cities
* Add a title to the map

* Create a bar chart to compare population numbers visually

"he p0551b111t1es are endless. SimpleGIs can also be used as a way to quickly test and
isualize geospatial algorithms that you come across. If you want to add more data
lyers, you can create more lists, but these lists would become dlfﬁcult to manage. In
1is case, you can use another Python module included in the standard distribution.
he soLite module provides a SQL-like database in Python that can be saved to disk
I run in memory.

Vell done! You are now a geospatial analyst. In this chapter, you learned the state
f the art of geospatial analysis through the story of Ushahidi and the Ebola virus.
ou learned the history of geospatial analysis and the technologies that support it.
du became familiar with foundational GIS and remote sensing concepts that will
rve you through the rest of the book. You actually built a working GIS that can be
¢panded to do whatever you can imagine! In the next chapter, we'll tackle the data
ats that you'll encounter as geospatial analysts. Geospatial analysts spend far
ore time dealing with data than actually performing analysis. Understanding the
a that you're working with is essential to working efficiently and having fun.

[47]

